Recurrences over division rings

Ahmed Cherchem (USTHB, Algiers)

Joint work with Abdelkader Necer and Tarek Garici

Lens, July 2013

A. Cherchem, T. Garici, A. Necer (Institute) Recurrences over division rings

Preliminaries

R : ring with an identity element which is not necessarily commutative, M : left R-module,

S(M) : the set of *M*-valued sequences $(u: \mathbb{N} \rightarrow M)$,

R[X]: the algebra of the polynomials with coefficients in the ring R (the indeterminate X commutes with the coefficients of R).

Definition

A sequence $u \in S(M)$ is called a linear recurring sequence if it satisfies a relation of the form

$$\forall n \in \mathbb{N}, u(n+h) = a_{h-1}u(n+h-1) + \cdots + a_1u(n+1) + a_0u(n),$$

where $h \in \mathbb{N}$ and $a_i \in R$.

The set of *M*-valued linear recurring sequences with coefficients in *R* is denoted $LRS_R(M)$.

Problem

$$u, v \in LRS_R(M) \Rightarrow u + v \in LRS_R(M)$$
?

$$\alpha \in R, u \in LRS_{R}(M) \Rightarrow \alpha u \in LRS_{R}(M)$$
?

Reference :

Linear recurring sequences over noncommutative rings, Journal of Algebra and its Applications, Vol. 11, N°2. (2012)

The set S(M), endowed with the ordinary addition and multiplication by a scalar is an *R*-module. We get an R[X]-module structure for S(M) by defining, for $p(X) = a_0 + a_1X + \cdots + a_hX^h \in R[X]$:

$$\forall u \in S(M), \forall n \in \mathbb{N},$$

$$(p(X).u)(n) = a_0u(n) + a_1u(n+1) + \cdots + a_hu(n+h).$$

Let $u \in S(M)$. Denote by I_u the annihilator of u in R[X]. We thus have :

$$I_u = \{ p \in R[X], \quad p.u = 0 \}.$$

 $u \in LRS_{R}(M) \Leftrightarrow I_{u}$ contains a monic polynomial.

Definitions

A monic polynomial contained in I_u is called characteristic polynomial of u. A characteristic polynomial with minimal degree h is called minimal polynomial of u and h is called order of the sequence u.

If fu = 0 and gv = 0 with fg = gf, then

$$fg(u+v)=g(fu)+f(gv)=0.$$

Or, if there exists φ, ψ such that $\varphi f = \psi g$, then

$$\varphi f(u+v) = \varphi(fu) + \psi(gv) = 0.$$

Let k be an arbitrary ring and $R = k \langle x, y \rangle$ the ring with noncommutative independant indeterminates x and y. Denote by u and v the linear recurring sequences defined over R by :

$$\forall n \in \mathbb{N}, \quad u(n) = x^n \text{ and } v(n) = y^n.$$

As $Rx \cap Ry = \{0\}$, then the sequence u + v is not a linear recurring sequence.

Proposition

Let D be a division ring and M a D-module. Then the set $LRS_D(M)$ of all M-valued linear recurring sequences with coefficients in D is a submodule of the D[X]-module S(M).

Remark

If $f(X) = X^{h} + a_{h-1}X^{h-1} + \cdots + a_{0}$ is a characteristic polynomial for the linear recurring sequence u, then for all $\alpha \in D$, $\alpha \neq 0$, the polynomial

$$g(X) = X^h + \alpha a_{h-1} \alpha^{-1} X^{h-1} + \dots + \alpha a_0 \alpha^{-1}$$

is a characteristic polynomial for the sequence αu .

Lemma (Jacobson)

Let m and d be two positive integers and let D be a division ring of dimension d over its center F. Then, for any polynomial $f(X) \in D[X]$ of degree m, there exists a nonzero polynomial $g(X) \in D[X]$ of degree m(d-1) such that $f(X)g(X) = g(X)f(X) \in F[X]$.

Determining the polynomial g(X).

$$f(X) = X^m + a_{m-1}X^{m-1} + \cdots + a_0$$
,

 $V = De_1 \oplus De_2 \oplus \cdots \oplus De_m$,

 φ the endomorphisme of V defined by $\varphi(e_i) = e_{i+1}$ if $1 \le i \le m-1$, and $\varphi(e_m) = -a_0e_1 - a_1e_2 - \cdots - a_{m-1}e_m$. φ is also an endomorphism of V regarded as a vector space over F. Let h be the characteristic polynomial of φ , then dividing h by f on the right, we

obtain g.

Proposition

Let D be a division ring of dimension d over its center F. Let M be a D-module. Let u and v be two elements of $LRS_D(M)$ with minimal polynomials f_1 and f_2 respectively. Set $s = \deg f_1$ and $t = \deg f_2$ and assume $s \leq t$. Let g_1 be the polynomial given by Jacobson's Lemma and corresponding to the polynomial f_1 . Then :

- The polynomial f₁g₁f₂ is a characteristic polynomial of the sequence u + v,
- The linear recurring sequence u + v has order less than or equal to ds + t.

Let \mathbb{H} be a ring of quaternions with center F and let u and v the sequences defined over \mathbb{H} by the relations :

$$u\left(0
ight)=1,$$
 $u\left(1
ight)=0,$ and $orall n\in\mathbb{N},$ $u\left(n+2
ight)=iu\left(n+1
ight)+u\left(n
ight)$

 $v\left(0
ight)=v\left(1
ight)=v\left(2
ight)=1$, and $orall n\in\mathbb{N}$, $v\left(n+3
ight)=v\left(n+2
ight)+jv\left(n
ight)$,

with respective characteristic polynomials

$$f_1(X) = X^2 - iX - 1$$
 and $f_2(X) = X^3 - X^2 - j$.

Example (cont)

Example

We have $V = \mathbb{H} e_1 \oplus \mathbb{H} e_2$ and the endomorphism φ is given by :

$$\varphi\left(\mathbf{e}_{1}
ight)=\mathbf{e}_{2}$$
 and $\varphi\left(\mathbf{e}_{2}
ight)=\mathbf{e}_{1}+\mathbf{i}\mathbf{e}_{2}.$

Let (u_1, \dots, u_8) be the canonical basis of the vector space F^8 , and remark that

$$\forall a + bi + cj + dk \in \mathbb{H}, i(a + bi + cj + dk) = -b + ai - dj + ck.$$

Then we have :

$$\begin{array}{lll} \varphi \left(u_{i} \right) &=& u_{i+4} \ \text{for} \ 1 \leq i \leq 4, \\ \varphi \left(u_{5} \right) &=& u_{1} + u_{6}, \varphi \left(u_{6} \right) = u_{2} - u_{5}, \\ \varphi \left(u_{7} \right) &=& u_{3} + u_{8}, \varphi \left(u_{8} \right) = u_{4} - u_{7}. \end{array}$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

We obtain the matrix :

with characteristic polynomial

$$h(X) = X^8 - 2X^6 + 3X^4 - 2X^2 + 1.$$

Dividing h(X) by $f_{1}(X)$, we get

$$g_1(X) = X^6 + iX^5 - 2X^4 - iX^3 + 2X^2 + iX - 1.$$

Therefore $f_1g_1f_2$ is a characteristic polynomial for the sequence u + v.

Definition

Let *R* be a ring. The generating function of the sequence $u \in S(R)$ is the formal series

$$G_{u}(X) = \sum_{n\geq 0} u(n) X^{n} \in R[[X]].$$

Proposition

Let D be a division ring and let $u \in S(D)$. Then the following statements are equivalent : 1. $u \in SRL_D(D)$, 2. The generating function of u is rational of the form $g^{-1}(X) f(X)$, where f(X) and g(X) are polynomials in D[X] with $g(0) \neq 0$.

Proof.

Let $u \in SRL_D(D)$, with characteristic polynomial $p(X) = X^h - a_1 X^{h-1} - \cdots - a_h \in D[X]$. Set $g(X) = 1 - a_1 X - \cdots - a_h X^h$. The coefficient of X^m in $g(X) G_u(X)$ is equal to 0 for $m \ge h$ and then we have

$$g(X) G_u(X) = u(0) + (u(1) - a_1 u(0)) X + \cdots + (u(h-1) - a_1 u(h-2) - \cdots - a_{h-1} u(0)) X^{h-1} = f(X).$$

Hence $G_{u}(X) = g^{-1}(X) f(X)$, with $g(0) \neq 0$.

▲帰♪ ▲ヨ♪ ▲ヨ♪ … ヨ

Proof.

Conversely, let $u \in S(D)$ and assume that the generating function of u is (left) rational : $G_u(X) = g^{-1}(X) f(X)$, where $f(X) = a_0 + a_1 X + \dots + a_h X^h$, $g(X) = b_0 + b_1 X + \dots + b_k X^k$ and $b_0 \neq 0$. Then

$$\begin{pmatrix} b_0 + b_1 X + \dots + b_k X^k \end{pmatrix} (u(0) + u(1) X + u(2) X^2 + \dots)$$

= $b_0 u(0) + (b_0 u(1) + b_1 u(0)) X + \dots$
+ $(b_0 u(h) + \dots + b_k u(h-k) X^h).$

Therefore, we obtain for any $n \in \mathbb{N}$,

$$u(n+h+1) = -b_0^{-1}(b_1u(n+h)+b_2u(n+h-1)+\cdots+b_ku(n+h-k)),$$

hence $u \in SRL_D(D)$.

3

(日) (同) (三) (三)

THANK YOU

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト